

D4.2 - Policy Adoption Measures for the Decarbonization of the H&C Sector

FACTSHEET #4_[Greece]

1. Identification of the measure

Provide tailor-made information to vulnerable households on the cost-efficient methods to integrate RES in heating and cooling

Strategic Policy Priority (SPP)	SPP #6: Ensure a smooth transition for vulnerable groups
Sector	Other
Туре	Technical

2. Identification of KPIs

KPIs

KPI #1	Percentage of vulnerable households reached with tailor-made information
KPI #2	Percentage of informed households that take action to integrate RES solutions
KPI #3	Satisfaction score or perceived usefulness of the information provided

3. Definition of the operationalization activities

OPERATIONALIZATION ACTIVITIES

#1 Identify and map vulnerable households

- Use social welfare databases, energy poverty statistics, or local authority records to identify target households.
- Segment households by type of building, heating system, and local RES potential (e.g. solar, biomass, heat pumps).

#2 Develop tailored information materials

- Create clear, simple, and visually engaging materials that explain:
 Available RES technologies suitable for different dwelling types.
 Cost-benefit analyses (including subsidies, payback periods).
 Step-by-step guidance on how to proceed (e.g. whom to contact, how to apply for aid).
- Ensure materials are adapted to different literacy levels and languages where relevant.

#3 Establish partnerships

- Engage with local authorities, social workers, NGOs and community organizations who already work with vulnerable groups.

- Partner with energy advisors, cooperatives, or installers who can offer follow-up support.

#4

Deploy communication and outreach campaigns

- Use direct mail, door-to-door visits, community meetings, local radio, and social media targeted at vulnerable groups.
- Organize information sessions in community centers or online.
- Offer a hotline or helpdesk service to provide personal advice.

#5

Integrate financial and technical support mechanisms

- Link the information provision with concrete assistance: Help with applications for subsidies, grants, or low-interest loans, offer free or discounted energy audits, provide lists of RES installers.

4. Overview of the expected results

RESULTS

KPI ID	Assumptions	Estimated results (indicatively)
#1	Enabling the above-mentioned operationalisation activities	Reach 80% of identified vulnerable households by 2030.
#2		30% of informed households initiate RES integration within 12 months of receiving information.
#3		Achieve an average satisfaction score of 4 or higher.

5. Applicability/focus of the measure¹:

Х	Municipality	Moschato – Tavros
	Region	
	Other	

6. Brief description of the discussion oriented towards a SWOT analysis

The study tour held in14 February 2025 in the region of Attica and in particular, in Municipality of Moschato – Tavros, in a low-income neighborhood.

The aim of the study tour was to showcase a certified passive building in Athens to engineers and policymakers. This building is of particular interest because it is

- situated in a very low-income neighborhood,
- it is a standard social multifamily house of 750 m²
- it is quite old, constructed in the 1970's to accommodate refugees.

¹ Each MS is expected to focus on the application to, at least, 3 cities and 1 region. In total, this corresponds to 4 factsheets (1 factsheet per measure, per city and/or region).

At the time of writing this report, this building is refurbished with regard to its energy efficiency according to the Passive House Concept. The objectives of the refurbishment are the minimization of heating and cooling demand by 90%, while achieving the best possible thermal comfort conditions. Moreover, by installing Renewable Energy systems, the building's energy production will overcome the building's consumption and it will become a Positive Energy Building. In this way, the carbon footprint of the building is going to be virtually eliminated and the requirements for carbon neutral buildings, which will be implemented from 2030 for all buildings, are going to be met today without huge investments in large scale Renewable Energy Systems.

This multifamily house is set under the auspices of the Hellenic Passive House Institute and the Municipality of Moschato-Tavros for five years with the consent of all the residents, who accept and commit to all the actions required for the project. The results of the project will be used by Hellenic Passive House Institute for the development of a feasibility study concerning the refurbishment of all the immigrant multifamily and social housing complexes of the surrounding area of Tavros – Moschato – Kallithea – Drougouti. The latter, aims to create new innovative funding schemes to attract investors and companies providing energy services, which will undertake the task of bringing the region's buildings to NZEB standards in time, under the requirements of the current legislation.

Participants of the study tour were energy planners, the Hellenic Passive House Institute, stakeholders from the Public Power Corporation, researchers and policymakers from CRES and University students. This study tour succeeded to

- Demonstrated feasibility in low-income areas: The event highlighted that high-performance, energy-efficient buildings are achievable even in vulnerable neighborhoods like Moschato—Tavros, helping to challenge perceptions that passive house standards are only for affluent areas.
- Raised awareness and built capacity: The tour successfully showcased the practical
 application of certified passive building standards in a real urban, low-income context
 in Athens, helping engineers, planners, and policymakers better understand how
 passive design works in practice.
- Promoted knowledge exchange: By bringing together diverse participants —energy
 planners, the Hellenic Passive House Institute, Public Power Corporation stakeholders,
 researchers, students and policymakers the tour enabled fruitful discussions on the
 challenges and opportunities of implementing passive buildings in Greece.
- Inspired future action: By seeing a successful example in situ, participants were encouraged to consider passive building solutions in their own work, whether in planning, policy, design, or advocacy.

Strengths

- High RES potential: Athens benefits from abundant solar energy, making RES solutions (solar thermal and PV) highly relevant and cost-efficient.
- Existing policy frameworks: The city is part of national and EU energy transition strategies (e.g. NECP, EU Green Deal, 100 Net Zero Cities network), so institutional backing exists.
- Strong local networks: Presence of active NGOs, social services, and community organizations that can help with outreach.
- Experience with energy poverty programs: Prior initiatives (energy vouchers, energy efficiency upgrades) provide a foundation for targeting vulnerable groups.

Weaknesses

- Fragmented housing stock: Many old, multi-owner apartment buildings with complex decision-making and legal barriers to RES adoption.
- Limited technical capacity at household level: Low awareness and technical knowledge among vulnerable groups may make it hard to translate information into action.
- Language/cultural barriers: Athens has diverse vulnerable populations, including migrants, who may not easily access or understand information materials unless carefully tailored.
- Limited municipal resources: City services may be stretched, making sustained personalized support harder to deliver new EPBD requirements.

Opportunities

- EU funding and national incentives:
 Access to Recovery and Resilience Facility fund, EU Cohesion fund, and national subsidy schemes can support RES adoption and advisory services.
- Digital tools: Potential to use apps, online portals, or GIS-based systems to deliver personalized recommendations efficiently.
- Job creation: Upskilling energy advisors or installers to serve vulnerable households could create green jobs in the city.
- Synergies with energy communities:
 Policy could encourage participation of vulnerable households in solar or RES cooperatives

Threats

- Upfront cost barriers: Even with good information, vulnerable households may struggle to afford initial investments without deep subsidies.
- Market readiness: Shortages of qualified RES installers or unreliable providers could lead to poor-quality installations, undermining trust.
- Resistance to change: Cultural attachment to traditional heating (e.g. oil burners) and inertia in multi-family buildings may slow adoption.
- Climate extremes: Heatwaves and urban heat island effects could outpace the ability of households to adopt and benefit from RES solutions.